16 | | の利点があります。ロボットを動作させながらリアルタイムで推論をすることができる。 |
17 | | |
18 | | 今回用いた学習データは、各4種類のMPSで200枚使用し、 |
| 19 | の利点があります。 |
| 20 | caffe has advantages such as high-speed operation, GPU support, |
| 21 | specialized architecture source code, etc. during learning. |
| 22 | ロボットを動作させながらリアルタイムで推論をすることができる。 |
| 23 | Inference can be made in real time while operating the robot. |
| 24 | 使用した学習データは、各4種類のMPSで200枚です。 |
| 25 | The training data we used is 200 sheets for each of the four MPSs. |
20 | | |
21 | | 学習が正しいかを評価するためにテストデータも各100枚も用意する。 |
22 | | 合計は40枚です。 |
23 | | そのデータを元に25000回学習させる。 |
24 | | |
25 | | それによりMPSが近く範囲内でMPSを認識することができる。 |
26 | | |
27 | | ロボットの動き方ははじめにレーザーレンジ距離センサを使用して |
28 | | 障害物を認識し障害物に近くに行く。 |
29 | | MPSとの距離が10cmになると学習の推論データを取得しMPSを認識する。 |
30 | | |
| 27 | The total is 200 × 4 = 800 sheets. |
| 28 | 学習が正しいかを評価するためにテストデータは各100枚です。 |
| 29 | The test data is 100 pieces each to evaluate whether the learning is correct. |
| 30 | 合計は400枚です。 |
| 31 | The total is 400 sheets. |
| 32 | データを元に25000回学習させる。 |
| 33 | Learn 25,000 times based on the data. |
| 34 | プログラムはMPSの近い範囲内でMPSを認識することができる。 |
| 35 | The program can recognize MPS within the near range of MPS. |
| 36 | ロボットの動き方を説明します。 |
| 37 | Explain how to move the robot. |
| 38 | はじめにレーザーレンジセンサを使用して障害物を認識する。 |
| 39 | First of all, an obstacle is recognized using a laser range sensor. |
| 40 | 次に障害物に近くに移動する。 |
| 41 | Then move closer to the obstacle. |
| 42 | MPSとの距離が10cmに止まる。 |
| 43 | The distance to MPS stops at 10 cm. |
| 44 | caffeを使用しMPSを認識する。 |
| 45 | Recognize MPS using caffe. |